Topics in Learning Theory

Lecture 2: Generalization Error



General Background

e Basic prediction problem:

— known input X.
— unknown output Y.
— prediction function (classifier) f: Y ~ f(X).

e Supervised learning:

— learn f from training data S,, = (X;,Y:)i=1.... n-
— quality of prediction: measured by loss function ¢(f(x),y).



Regression

e Predictreal value y € R
e Real-valued prediction rule f(z).

e Squared error loss: ¢(f(x),y) = (f(z) — y)=.



Binary Classification

e Predict binary label y € {£1}.

e Classifier f(x):

— binary valued: f(x) € {1}
y=1 if f(x) >0

_ real val ith decision rule:
real valued f(x), with decision rule y=—1 if f(x) <0

e Classification error loss: ¢(f(x),y) = I(f(X)Y < 0).

— [ : indicator function.



Training error and generalization error

Prediction function f(x).
Loss function ¢(f(x),y).

Training error: R(f) =1 3°"  #(f(X,),Y)).

— What we can observe.

Generalization error (test error): R(f) = Ex y¢(f(X),Y).

— Prediction performance over unseen data: what we are interested in.



Learning Algorithm

e Learning algorithm A
— learn prediction rule f = A(S,,) from training data S,, = {(X;, Y;)}i—1

.....

e Empirical risk minimization learner:

n
A

f = argmin Z o(f(X;),Y:),

1=1

H: set of candidate prediction rules (e.g. linear combination of features).

e Complexity of learning algorithm A
— measured by how large and diversified the candidate rule set H is.



Overfitting and Model Complexity

Over-fitting of data:

- f(x) =y, if x = x; at a training point, and f(x) = 0 otherwise.
— f(x) that perfectly explains the data is not necessarily a good predictor.

Predictive ability:

— fit well on the training data (small bias).
— training performance resembles test performance (small variance).

Trade-off: expressively powerful model — poor generalization.

Regularization: restrict the model expressiveness or statistical complexity.
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Bias-variance trade-off
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Estimating generalization error from training error

e generalization-error = training-error + model-complexity

— training-error: measuring bias of the learning algorithm
— model-complexity: measuring variance of the learning algorithm

e Generalization analysis: let f = A(S,), then with probability at least 1 — 7,

EX Y¢( < Z§b Qn(Hanz
generahzatlon error _, model complex?ﬂ/—>0 as n—oo

-~

training error
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Uniform Convergence

e Recall Empirical risk minimization learner:

A

f = arg min Z ¢(f(Xz)7 }fz)a
1=1

FEH 4
H: set of candidate prediction rules (e.g. linear combination of features).

e We have Ve > 0:

P (Bt 70030 > 13007070 + ) < g
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where ¢(H) = {o(f(X),Y) : f € H)}, and for any function class H:

77¢(H)(€) =P <J§1€17]2 (Ex yo(f — — Z o(f ) > e) .

\ . 7

one-sided uniform convergence over family ¢(H)

e Given uniform convergence bound, model complexity can be estimated as:

Qn(M,1) = n,y,(n) = inf{e : ngo(€) < n}.
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Covering numbers: size of function family

e If H is finite, then (union bound)

Ner)(€) = |H| sup P <EX vo(f — —Z(b ) .
fer

A&

convergence of smgle hypothe3|s

e What if family not finite?

— Approximate by a finite number of functions (covering)
— Let 'H be a hypothesis family, and ¢ > 0, then the covering number
N(H,e€) is the smallest number of functions { f;} such that Vf € H, then

min,; d(f;, f) <e
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L., covering number

o Define d(f, /') = supx y |f(X) — f'(X)]
— the covering number is denoted as N (H, ¢)

o Similarly, d(f, /) = supx y [6(f(X),Y) — 6(J'(X),Y)|
— the coverining number is denoted as N, (¢(H), €)

o If [o(f.y) — o(fy)l < ~If — /| (Lipschitz in f), then Nos(d(H),ve)
Noo(H,€).

<
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Uniform Convergence Bound Using L., covering number
Let f; be a Noo((H), €/4) cover of ¢(H), then

P <SUP <Ex,y¢(f(X), Y) - %Z o(f(Xi), Yi)) > €>

fer

<SP@Ef eR;Vi:if [Exye(fi(X),Y) - Exyo(f(X),Y)| < e/4

|%Z D(F;(X0), Vo) = > ¢(f(X3),Yi)| < e/4

then (EX,Y¢(fj(X)7 Y) — %Z ¢(fJ(X%)7 Y'l)) > 6/2>
<P <51;p <EX,Y¢(fj(X)7 Y) - %Z ¢(fJ(X%)7 Y;)) > 6/2>

<Nu($(H), ¢/4) sup P (<EX,Y¢<fj<X>, V) == 376X, m) > e/z) .

J
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Exponential Tail Bound

o Estimating P ((Ex,y¢(f;(X),Y) — 5 >0, ¢(f;(X4), Vi) > €/2)

o Let 2 = o(fi(x),y) and z; = ¢(f;(X;),Y;) be iid (independent, identically,
distributed) random variables, we want to estimate Ez — - > |

— convergence of empirical mean of a random variable to its true mean
— law of large numbers

e Want a bound of the form (for all 5):

] — 2 /22
PEz— = ;> €/2) < qe e/
(Ez nizzlz_e/)_ae :
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implying
2 /12
o) (€) < aNeo(p(H), €/4)e™ /P,

and thus

Qn(H,n) = 1,05 (n) < inf{e: e > by/In[aNoo(p(H), €/4) /0] /n}.

e Learning Bound for empirical risk minimization

EXygb ) < = Zgb Y;) +inf{e: e>b\/lna,N (P(H),e/4)/n]/n} .

generallzatlon error _ model complexity
tralnlng error

— why exponential tail bound?

— learning complexity of form n=!In N, (¢(H), €/4).

— test error similar to training error as long as the number of functions in the
family is sub-exponential in n
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Hoeffding Inequality

Assume z € [0, 1], then

n

1
P(Ez — — i > e) < —2¢?
(Ez n;z_e)_exp( €“)

n

1
P(Ez — = < —e) < —2¢2).
(Ez n;z < —¢€) < exp(—2¢7)

Thus

n

1

P(Ez— =) 2z >¢/2) <exp(—€?/2).

n “
1=1

exponential inequality holds with « = 1 and b = /2.
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Hoeffding Inequality: Proof

n

1

A ANEz—1$1  »
P(Bz— 3 2 > ) < Bt nEi =)
=1
n
<E H ek/n(Ez—Zz‘) — [Ezzek/n(Ez—zz)]n
=1 max achievedvat z; =0o0r1

S[ek/n(Ez—l)EZ 4+ (1 . Ez)ek/nEz]n (*)

<[eP/mP/BIn ()

Taking A = 4ne, we have P(Ez — %2?21 z; > €) < e—2ne”
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Details

e Proof of (x): using Jensens: e* < (1 —x/a) + x/ae* forall 0 < z < 1, we
have

EZieA/n(Ez—zi) < GA/n(Ez—l)EZi[(l . (1 o Zz)) 4+ (1 . Zi)e)\/n]

e Proof of (xx): need to show that when x € [0, 1]

eoz(a;—l)aj 4+ (1 . x)eozx < 9.5[6—04/2 + ea/Ql < 6a2/8-

achieved%? z = 0.5

The last inequility follows from comparing Taylor expansion of

In[0.5e~%/2 + 0.5e*/?] < o?/8.
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Empirical (sample dependent) covering humbers

distance d is data dependent.

e.g. empirical L., covering number: distance is d(f, f'|Sy)
Sup(x, v;) |0(f(X:), Ys) — o(f'(Xi), Y3)

empirical L., cover can be finite when L, cover is infinite.

Learning bound can be obtained using empirical covering numbers (shown

in later lectures)
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