Topics in Learning Theory

Lecture 2: Generalization Error

General Background

- Basic prediction problem:
	- **–** known input X.
	- **–** unknown output Y .
	- **–** prediction function (classifier) $f: Y \approx f(X)$.
- Supervised learning:
	- $-$ learn f from training data $S_n = (X_i, Y_i)_{i=1,...,n}$.
	- **–** quality of prediction: measured by loss function $\phi(f(x), y)$.

Regression

- Predict real value $y \in R$
- Real-valued prediction rule $f(x)$.
- Squared error loss: $\phi(f(x), y) = (f(x) y)^2$.

Binary Classification

- Predict binary label $y \in {\pm 1}$.
- Classifier $f(x)$:
	- binary valued: $f(x) \in \{\pm 1\}$
	- **–** real valued $f(x)$, with decision rule: $\begin{cases} y = 1 & \text{if } f(x) > 0 \ 0 & \text{if } f(x) \geq 0 \end{cases}$ $y=-1$ if $f(x)\leq 0$
- Classification error loss: $\phi(f(x), y) = I(f(X)Y \leq 0)$.
	- **–** I : indicator function.

Training error and generalization error

- Prediction function $f(x)$.
- Loss function $\phi(f(x), y)$.
- Training error: $\hat{R}(f) = \frac{1}{n} \sum_{i=1}^{n} \phi(f(X_i), Y_i)$.
	- **–** What we can observe.
- Generalization error (test error): $R(f) = \mathbf{E}_{X,Y} \phi(f(X), Y)$.
	- **–** Prediction performance over unseen data: what we are interested in.

Learning Algorithm

- Learning algorithm A
	- learn prediction rule $\hat{f} = \mathcal{A}(S_n)$ from training data $S_n = \{(X_i, Y_i)\}_{i=1,...,n}$.
- Empirical risk minimization learner:

$$
\hat{f} = \arg\min_{f \in \mathcal{H}} \sum_{i=1}^n \phi(f(X_i), Y_i),
$$

 $H:$ set of candidate prediction rules (e.g. linear combination of features).

- Complexity of learning algorithm A
	- $-$ measured by how large and diversified the candidate rule set H is.

Overfitting and Model Complexity

- Over-fitting of data:
	- $f(x) = y_i$ if $x = x_i$ at a training point, and $f(x) = 0$ otherwise.
	- $f(x)$ that perfectly explains the data is not necessarily a good predictor.
- Predictive ability:
	- **–** fit well on the training data (small bias).
	- **–** training performance resembles test performance (small variance).
- Trade-off: expressively powerful model \rightarrow poor generalization.
- Regularization: restrict the model expressiveness or statistical complexity.

Model complexity

Bias-variance trade-off

Model complexity

Estimating generalization error from training error

- generalization-error = training-error + model-complexity
	- **–** training-error: measuring bias of the learning algorithm
	- **–** model-complexity: measuring variance of the learning algorithm
- Generalization analysis: let $\hat{f} = A(S_n)$, then with probability at least 1η ,

$$
\underbrace{\mathbf{E}_{X,Y}\phi(\hat{f}(X),Y)}_{\text{generalization error}}\leq \underbrace{\frac{1}{n}\sum_{i=1}^n\phi(\hat{f}(X_i),Y_i)}_{\text{training error}}+\underbrace{Q_n(\mathcal{H},\eta)}_{\text{model complexity}\to 0\text{ as }n\to\infty}
$$

.

Model complexity

Uniform Convergence

• Recall Empirical risk minimization learner:

$$
\hat{f} = \arg\min_{f \in \mathcal{H}} \sum_{i=1}^n \phi(f(X_i), Y_i),
$$

 $H:$ set of candidate prediction rules (e.g. linear combination of features).

• We have $\forall \epsilon > 0$:

$$
P\left(\mathbf{E}_{X,Y}\phi(\hat{f}(X),Y) > \frac{1}{n}\sum_{i=1}^n \phi(\hat{f}(X_i),Y_i) + \epsilon\right) \le \eta_{\phi(\mathcal{H})}(\epsilon),
$$

where $\phi(\mathcal{H}) = \{\phi(f(X), Y) : f \in \mathcal{H})\}$, and for any function class \mathcal{H} :

$$
\eta_{\phi(\mathcal{H})}(\epsilon) = P\left(\sup_{f \in \mathcal{H}}\left(\mathbf{E}_{X,Y}\phi(f(X),Y) - \frac{1}{n}\sum_{i=1}^n \phi(f(X_i),Y_i)\right) > \epsilon\right).
$$
 one-sided uniform convergence over family $\phi(\mathcal{H})$

• Given uniform convergence bound, model complexity can be estimated as:

$$
Q_n(\mathcal{H}, \eta) = \eta_{\phi(\mathcal{H})}^{-1}(\eta) = \inf \{ \epsilon : \eta_{\phi(\mathcal{H})}(\epsilon) \leq \eta \}.
$$

Covering numbers: size of function family

• If H is finite, then (union bound)

$$
\eta_{\phi(\mathcal{H})}(\epsilon) = |\mathcal{H}| \sup_{f \in \mathcal{H}} P\left(\mathbf{E}_{X,Y}\phi(f(X),Y) - \frac{1}{n}\sum_{i=1}^n \phi(f(X_i),Y_i) > \epsilon\right).
$$
convergence of single hypothesis

- What if family not finite?
	- **–** Approximate by a finite number of functions (covering)
	- $-$ Let H be a hypothesis family, and $\epsilon > 0$, then the covering number $N(\mathcal{H}, \epsilon)$ is the smallest number of functions $\{f_i\}$ such that $\forall f \in \mathcal{H}$, then $\min_j d(f_j, f) \leq \epsilon.$

L[∞] **covering number**

- Define $d(f, f') = \sup_{X,Y} |f(X) f'(X)|$
	- the covering number is denoted as $N_{\infty}(\mathcal{H}, \epsilon)$
- Similarly, $d(f, f') = \sup_{X,Y} |\phi(f(X), Y) \phi(f'(X), Y)|$
	- **–** the coverining number is denoted as $N_{\infty}(\phi(\mathcal{H}), \epsilon)$
- If $|\phi(f, y) \phi(f', y)| \leq |\gamma|f f'|$ (Lipschitz in f), then $N_\infty(\phi(\mathcal{H}), \gamma \epsilon) \leq$ $N_{\infty}(\mathcal{H}, \epsilon)$.

Uniform Convergence Bound Using L[∞] **covering number**

Let f_j be a $N_\infty(\phi(\mathcal{H}), \epsilon/4)$ cover of $\phi(\mathcal{H})$, then

$$
P\left(\sup_{f\in\mathcal{H}}\left(\mathbf{E}_{X,Y}\phi(f(X),Y)-\frac{1}{n}\sum_{i=1}^{n}\phi(f(X_{i}),Y_{i})\right) > \epsilon\right)
$$

\n
$$
\leq P\left(\exists f\in\mathcal{H};\forall j:\text{if }|\mathbf{E}_{X,Y}\phi(f_{j}(X),Y)-\mathbf{E}_{X,Y}\phi(f(X),Y)|\leq \epsilon/4
$$

\n
$$
\left|\frac{1}{n}\sum_{i}\phi(f_{j}(X_{i}),Y_{i})-\sum_{i}\phi(f(X_{i}),Y_{i})\right|\leq \epsilon/4
$$

\nthen
$$
\left(\mathbf{E}_{X,Y}\phi(f_{j}(X),Y)-\frac{1}{n}\sum_{i=1}^{n}\phi(f_{j}(X_{i}),Y_{i})\right) > \epsilon/2\right)
$$

\n
$$
\leq P\left(\sup_{j}\left(\mathbf{E}_{X,Y}\phi(f_{j}(X),Y)-\frac{1}{n}\sum_{i=1}^{n}\phi(f_{j}(X_{i}),Y_{i})\right) > \epsilon/2\right)
$$

\n
$$
\leq N_{\infty}(\phi(\mathcal{H}),\epsilon/4)\sup_{j}P\left(\left(\mathbf{E}_{X,Y}\phi(f_{j}(X),Y)-\frac{1}{n}\sum_{i=1}^{n}\phi(f_{j}(X_{i}),Y_{i})\right) > \epsilon/2\right).
$$

17

Exponential Tail Bound

- Estimating $P\left((\mathbf{E}_{X,Y}\phi(f_j(X),Y)-\frac{1}{n}\right)$ $\frac{1}{n} \sum_{i=1}^{n} \phi(f_j(X_i), Y_i) > \epsilon/2$
- Let $z = \phi(f_i(x), y)$ and $z_i = \phi(f_i(X_i), Y_i)$ be iid (independent, identically, distributed) random variables, we want to estimate $Ez - \frac{1}{n}$ $\frac{1}{n} \sum_{i=1}^{n} z_i$
	- **–** convergence of empirical mean of a random variable to its true mean
	- **–** law of large numbers
- Want a bound of the form (for all j):

$$
P(\mathbf{E}z - \frac{1}{n}\sum_{i=1}^{n} z_i \ge \epsilon/2) \le a e^{-n\epsilon^2/b^2},
$$

implying

$$
\eta_{\phi(\mathcal{H})}(\epsilon) \le a N_{\infty}(\phi(\mathcal{H}), \epsilon/4) e^{-n\epsilon^2/b^2},
$$

and thus

$$
Q_n(\mathcal{H}, \eta) = \eta_{\phi(\mathcal{H})}^{-1}(\eta) \le \inf \{ \epsilon : \epsilon \ge b\sqrt{\ln[a \mathcal{N}_{\infty}(\phi(\mathcal{H}), \epsilon/4)/\eta]/n} \}.
$$

• Learning Bound for empirical risk minimization

$$
\underbrace{\mathbf{E}_{X,Y}\phi(\hat{f}(X),Y)}_{\text{generalization error}}\leq \underbrace{\frac{1}{n}\sum_{i=1}^n\phi(\hat{f}(X_i),Y_i)}_{\text{training error}}+\underbrace{\inf\{\epsilon:\epsilon\geq b\sqrt{\ln[aN_\infty(\phi(\mathcal{H}),\epsilon/4)/\eta]/n}\}}_{\text{model complexity}}.
$$

- **–** why exponential tail bound?
- **–** learning complexity of form $n^{-1}\ln N_\infty(\phi(\mathcal{H}), \epsilon/4)$.
- **–** test error similar to training error as long as the number of functions in the family is sub-exponential in n

Hoeffding Inequality

Assume $z \in [0,1]$, then

$$
P(\mathbf{E}z - \frac{1}{n}\sum_{i=1}^{n} z_i \ge \epsilon) \le \exp(-2\epsilon^2)
$$

$$
P(\mathbf{E}z - \frac{1}{n}\sum_{i=1}^{n} z_i \le -\epsilon) \le \exp(-2\epsilon^2).
$$

Thus

$$
P(\mathbf{E}z - \frac{1}{n}\sum_{i=1}^{n} z_i \ge \epsilon/2) \le \exp(-\epsilon^2/2).
$$

exponential inequality holds with $a=1$ and $b=\,$ 2.

Hoeffding Inequality: Proof

$$
P(\mathbf{E}z - \frac{1}{n}\sum_{i=1}^{n} z_i \ge \epsilon)e^{\lambda \epsilon} \le \mathbf{E}e^{\lambda(\mathbf{E}z - \frac{1}{n}\sum_{i=1}^{n} z_i)}
$$

$$
\le \mathbf{E}\prod_{i=1}^{n} e^{\lambda/n(\mathbf{E}z - z_i)} = \underbrace{[\mathbf{E}_{z_i}e^{\lambda/n(\mathbf{E}z - z_i)}]^n}_{\text{max achieved at } z_i = 0 \text{ or } 1}
$$

$$
\le [e^{\lambda/n(\mathbf{E}z - 1)}\mathbf{E}z + (1 - \mathbf{E}z)e^{\lambda/n\mathbf{E}z}]^n \quad (*)
$$

$$
\le [e^{(\lambda/n)^2/8}]^n. \quad (*)
$$

Taking $\lambda = 4n\epsilon$, we have $P(\mathbf{E}z - \frac{1}{n})$ $\frac{1}{n}\sum_{i=1}^n z_i \geq \epsilon$) $\leq e^{-2n\epsilon^2}$. $\big)$

Details

• Proof of $(*)$: using Jensens: $e^x \le (1 - x/a) + x/ae^a$ for all $0 \le x \le 1$, we have

$$
\mathbf{E}_{z_i} e^{\lambda/n(\mathbf{E}z - z_i)} \le e^{\lambda/n(\mathbf{E}z - 1)} \mathbf{E}_{z_i} [(1 - (1 - z_i)) + (1 - z_i)e^{\lambda/n}]
$$

• Proof of $(**)$: need to show that when $x \in [0,1]$

$$
e^{\alpha(x-1)}x + (1-x)e^{\alpha x} \le \underbrace{0.5[e^{-\alpha/2} + e^{\alpha/2}]}_{\text{achieved at } x = 0.5} \le e^{\alpha^2/8}.
$$

The last inequlity follows from comparing Taylor expansion of

$$
\ln[0.5e^{-\alpha/2} + 0.5e^{\alpha/2}] \le \alpha^2/8.
$$

Empirical (sample dependent) covering numbers

- distance d is data dependent.
- e.g. empirical L_{∞} covering number: distance is $d(f, f'|S_n) =$ $\sup_{(X_i,Y_i)} |\phi(f(X_i),Y_i) - \phi(f'(X_i),Y_i)|$
- empirical L_{∞} cover can be finite when L_{∞} cover is infinite.
- Learning bound can be obtained using empirical covering numbers (shown in later lectures)

References

- Books on empirical process:
	- **–** A. W. van der Vaart and J. A. Wellner. *Weak convergence and empirical processes. Springer Series in Statistics. Springer-Verlag, New York, 1996.*
- Hoeffding Inequality:
	- **–** W. Hoeffding. Probability inequalities for sums of bounded random variables. *Journal of the American Statistical Association*, 58(301):13– 30, March 1963.