
Topics in Learning Theory

Lecture 2: Generalization Error



General Background

• Basic prediction problem:

– known input X.
– unknown output Y .
– prediction function (classifier) f : Y ≈ f(X).

• Supervised learning:

– learn f from training data Sn = (Xi, Yi)i=1,...,n.
– quality of prediction: measured by loss function φ(f(x), y).

1



Regression

• Predict real value y ∈ R

• Real-valued prediction rule f(x).

• Squared error loss: φ(f(x), y) = (f(x)− y)2.
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Binary Classification

• Predict binary label y ∈ {±1}.

• Classifier f(x):

– binary valued: f(x) ∈ {±1}

– real valued f(x), with decision rule:

{
y = 1 if f(x) > 0
y = −1 if f(x) ≤ 0

• Classification error loss: φ(f(x), y) = I(f(X)Y ≤ 0).

– I : indicator function.
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Training error and generalization error

• Prediction function f(x).

• Loss function φ(f(x), y).

• Training error: R̂(f) = 1
n

∑n
i=1 φ(f(Xi), Yi).

– What we can observe.

• Generalization error (test error): R(f) = EX,Y φ(f(X), Y ).

– Prediction performance over unseen data: what we are interested in.
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Learning Algorithm

• Learning algorithm A

– learn prediction rule f̂ = A(Sn) from training data Sn = {(Xi, Yi)}i=1,...,n.

• Empirical risk minimization learner:

f̂ = arg min
f∈H

n∑
i=1

φ(f(Xi), Yi),

H: set of candidate prediction rules (e.g. linear combination of features).

• Complexity of learning algorithm A

– measured by how large and diversified the candidate rule set H is.
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Overfitting and Model Complexity

• Over-fitting of data:

– f(x) = yi if x = xi at a training point, and f(x) = 0 otherwise.
– f(x) that perfectly explains the data is not necessarily a good predictor.

• Predictive ability:

– fit well on the training data (small bias).
– training performance resembles test performance (small variance).

• Trade-off: expressively powerful model → poor generalization.

• Regularization: restrict the model expressiveness or statistical complexity.
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Bias-variance trade-off

estimated function

truth f(x)

Model space
A

B

closest (approximation error, or bias)

f(x)f(x)

variance (estimation error)
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Estimating generalization error from training error

• generalization-error = training-error + model-complexity

– training-error: measuring bias of the learning algorithm
– model-complexity: measuring variance of the learning algorithm

• Generalization analysis: let f̂ = A(Sn), then with probability at least 1− η,

EX,Y φ(f̂(X), Y )︸ ︷︷ ︸
generalization error

≤ 1
n

n∑
i=1

φ(f̂(Xi), Yi)︸ ︷︷ ︸
training error

+ Qn(H, η)︸ ︷︷ ︸
model complexity→0 as n→∞

.
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learning bound (training error + model complexity)
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Uniform Convergence

• Recall Empirical risk minimization learner:

f̂ = arg min
f∈H

n∑
i=1

φ(f(Xi), Yi),

H: set of candidate prediction rules (e.g. linear combination of features).

• We have ∀ε > 0:

P

(
EX,Y φ(f̂(X), Y ) >

1
n

n∑
i=1

φ(f̂(Xi), Yi) + ε

)
≤ ηφ(H)(ε),
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where φ(H) = {φ(f(X), Y ) : f ∈ H)}, and for any function class H:

ηφ(H)(ε) = P

(
sup
f∈H

(
EX,Y φ(f(X), Y )− 1

n

n∑
i=1

φ(f(Xi), Yi)

)
> ε

)
︸ ︷︷ ︸

one-sided uniform convergence over family φ(H)

.

• Given uniform convergence bound, model complexity can be estimated as:

Qn(H, η) = η−1
φ(H)(η) = inf{ε : ηφ(H)(ε) ≤ η}.
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Covering numbers: size of function family

• If H is finite, then (union bound)

ηφ(H)(ε) = |H| sup
f∈H

P

(
EX,Y φ(f(X), Y )− 1

n

n∑
i=1

φ(f(Xi), Yi) > ε

)
︸ ︷︷ ︸

convergence of single hypothesis

.

• What if family not finite?

– Approximate by a finite number of functions (covering)
– Let H be a hypothesis family, and ε > 0, then the covering number

N(H, ε) is the smallest number of functions {fj} such that ∀f ∈ H, then
minj d(fj, f) ≤ ε.
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L∞ covering number

• Define d(f, f ′) = supX,Y |f(X)− f ′(X)|

– the covering number is denoted as N∞(H, ε)

• Similarly, d(f, f ′) = supX,Y |φ(f(X), Y )− φ(f ′(X), Y )|

– the coverining number is denoted as N∞(φ(H), ε)

• If |φ(f, y) − φ(f ′, y)| ≤ γ|f − f ′| (Lipschitz in f ), then N∞(φ(H), γε) ≤
N∞(H, ε).
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Uniform Convergence Bound Using L∞ covering number
Let fj be a N∞(φ(H), ε/4) cover of φ(H), then

P

 
sup
f∈H

 
EX,Y φ(f(X), Y )−

1

n

nX
i=1

φ(f(Xi), Yi)

!
> ε

!
≤P (∃f ∈ H; ∀j : if |EX,Y φ(fj(X), Y )− EX,Y φ(f(X), Y )| ≤ ε/4˛̨̨̨

˛1nX
i

φ(fj(Xi), Yi)−
X

i

φ(f(Xi), Yi)

˛̨̨̨
˛ ≤ ε/4

then

 
EX,Y φ(fj(X), Y )−

1

n

nX
i=1

φ(fj(Xi), Yi)

!
> ε/2

!

≤P

 
sup

j

 
EX,Y φ(fj(X), Y )−

1

n

nX
i=1

φ(fj(Xi), Yi)

!
> ε/2

!

≤N∞(φ(H), ε/4) sup
j

P

  
EX,Y φ(fj(X), Y )−

1

n

nX
i=1

φ(fj(Xi), Yi)

!
> ε/2

!
.
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Exponential Tail Bound

• Estimating P
((

EX,Y φ(fj(X), Y )− 1
n

∑n
i=1 φ(fj(Xi), Yi)

)
> ε/2

)
• Let z = φ(fj(x), y) and zi = φ(fj(Xi), Yi) be iid (independent, identically,

distributed) random variables, we want to estimate Ez − 1
n

∑n
i=1 zi

– convergence of empirical mean of a random variable to its true mean
– law of large numbers

• Want a bound of the form (for all j):

P (Ez − 1
n

n∑
i=1

zi ≥ ε/2) ≤ ae−nε2/b2
,
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implying
ηφ(H)(ε) ≤ aN∞(φ(H), ε/4)e−nε2/b2

,

and thus

Qn(H, η) = η−1
φ(H)(η) ≤ inf{ε : ε ≥ b

√
ln[aN∞(φ(H), ε/4)/η]/n}.

• Learning Bound for empirical risk minimization

EX,Y φ(f̂(X), Y )︸ ︷︷ ︸
generalization error

≤ 1
n

n∑
i=1

φ(f̂(Xi), Yi)︸ ︷︷ ︸
training error

+ inf{ε : ε ≥ b
√

ln[aN∞(φ(H), ε/4)/η]/n}︸ ︷︷ ︸
model complexity

.

– why exponential tail bound?
– learning complexity of form n−1 lnN∞(φ(H), ε/4).
– test error similar to training error as long as the number of functions in the

family is sub-exponential in n
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Hoeffding Inequality

Assume z ∈ [0, 1], then

P (Ez − 1
n

n∑
i=1

zi ≥ ε) ≤ exp(−2ε2)

P (Ez − 1
n

n∑
i=1

zi ≤ −ε) ≤ exp(−2ε2).

Thus

P (Ez − 1
n

n∑
i=1

zi ≥ ε/2) ≤ exp(−ε2/2).

exponential inequality holds with a = 1 and b =
√

2.
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Hoeffding Inequality: Proof

P (Ez − 1
n

n∑
i=1

zi ≥ ε)eλε ≤ Eeλ(Ez−1
n

Pn
i=1 zi)

≤E
n∏

i=1

eλ/n(Ez−zi) = [Ezi
eλ/n(Ez−zi)]n︸ ︷︷ ︸

max achieved at zi = 0 or 1

≤[eλ/n(Ez−1)Ez + (1−Ez)eλ/nEz]n (∗)

≤[e(λ/n)2/8]n. (∗∗)

Taking λ = 4nε, we have P (Ez − 1
n

∑n
i=1 zi ≥ ε) ≤ e−2nε2.
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Details

• Proof of (∗): using Jensens: ex ≤ (1 − x/a) + x/aea for all 0 ≤ x ≤ 1, we
have

Ezi
eλ/n(Ez−zi) ≤ eλ/n(Ez−1)Ezi

[(1− (1− zi)) + (1− zi)eλ/n]

• Proof of (∗∗): need to show that when x ∈ [0, 1]

eα(x−1)x + (1− x)eαx ≤ 0.5[e−α/2 + eα/2]︸ ︷︷ ︸
achieved at x = 0.5

≤ eα2/8.

The last inequlity follows from comparing Taylor expansion of

ln[0.5e−α/2 + 0.5eα/2] ≤ α2/8.
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Empirical (sample dependent) covering numbers

• distance d is data dependent.

• e.g. empirical L∞ covering number: distance is d(f, f ′|Sn) =
sup(Xi,Yi)

|φ(f(Xi), Yi)− φ(f ′(Xi), Yi)|

• empirical L∞ cover can be finite when L∞ cover is infinite.

• Learning bound can be obtained using empirical covering numbers (shown
in later lectures)
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