Topics in Learning Theory

Lecture 2: Generalization Error

General Background

- Basic prediction problem:
 - known input X.
 - unknown output Y.
 - prediction function (classifier) $f: Y \approx f(X)$.
- Supervised learning:
 - learn f from training data $S_n = (X_i, Y_i)_{i=1,...,n}$.
 - quality of prediction: measured by loss function $\phi(f(x), y)$.

Regression

- ullet Predict real value $y \in R$
- Real-valued prediction rule f(x).
- Squared error loss: $\phi(f(x), y) = (f(x) y)^2$.

Binary Classification

- Predict binary label $y \in \{\pm 1\}$.
- Classifier f(x):

 - binary valued: $f(x)\in\{\pm 1\}$ real valued f(x), with decision rule: $\begin{cases} y=1 & \text{if } f(x)>0 \\ y=-1 & \text{if } f(x)\leq 0 \end{cases}$
- Classification error loss: $\phi(f(x), y) = I(f(X)Y \leq 0)$.
 - *I* : indicator function.

Training error and generalization error

- Prediction function f(x).
- Loss function $\phi(f(x), y)$.
- Training error: $\hat{R}(f) = \frac{1}{n} \sum_{i=1}^{n} \phi(f(X_i), Y_i)$.
 - What we can observe.
- Generalization error (test error): $R(f) = \mathbf{E}_{X,Y} \phi(f(X),Y)$.
 - Prediction performance over unseen data: what we are interested in.

Learning Algorithm

- Learning algorithm A
 - learn prediction rule $\hat{f} = \mathcal{A}(S_n)$ from training data $S_n = \{(X_i, Y_i)\}_{i=1,...,n}$.
- Empirical risk minimization learner:

$$\hat{f} = rg\min_{f \in \mathcal{H}} \sum_{i=1}^n \phi(f(X_i), Y_i),$$

 \mathcal{H} : set of candidate prediction rules (e.g. linear combination of features).

- Complexity of learning algorithm \mathcal{A}
 - measured by how large and diversified the candidate rule set \mathcal{H} is.

Overfitting and Model Complexity

- Over-fitting of data:
 - $f(x) = y_i$ if $x = x_i$ at a training point, and f(x) = 0 otherwise.
 - f(x) that perfectly explains the data is not necessarily a good predictor.
- Predictive ability:
 - fit well on the training data (small bias).
 - training performance resembles test performance (small variance).
- Trade-off: expressively powerful model → poor generalization.
- Regularization: restrict the model expressiveness or statistical complexity.

Bias-variance trade-off

Estimating generalization error from training error

- generalization-error = training-error + model-complexity
 - training-error: measuring bias of the learning algorithm
 - model-complexity: measuring variance of the learning algorithm
- Generalization analysis: let $\hat{f} = \mathcal{A}(S_n)$, then with probability at least 1η ,

$$\underbrace{\mathbf{E}_{X,Y}\phi(\hat{f}(X),Y)}_{\text{generalization error}} \leq \underbrace{\frac{1}{n}\sum_{i=1}^{n}\phi(\hat{f}(X_i),Y_i)}_{\text{training error}} + \underbrace{\underbrace{Q_n(\mathcal{H},\eta)}_{\text{model complexity}\to 0 \text{ as } n\to\infty}}_{\text{training error}}.$$

Uniform Convergence

Recall Empirical risk minimization learner:

$$\hat{f} = rg\min_{f \in \mathcal{H}} \sum_{i=1}^n \phi(f(X_i), Y_i),$$

 \mathcal{H} : set of candidate prediction rules (e.g. linear combination of features).

• We have $\forall \epsilon > 0$:

$$P\left(\mathbf{E}_{X,Y}\phi(\hat{f}(X),Y) > \frac{1}{n}\sum_{i=1}^{n}\phi(\hat{f}(X_i),Y_i) + \epsilon\right) \le \eta_{\phi(\mathcal{H})}(\epsilon),$$

where $\phi(\mathcal{H}) = \{\phi(f(X), Y) : f \in \mathcal{H}\}\$, and for any function class \mathcal{H} :

$$\eta_{\phi(\mathcal{H})}(\epsilon) = P\left(\sup_{f \in \mathcal{H}} \left(\mathbf{E}_{X,Y}\phi(f(X),Y) - \frac{1}{n}\sum_{i=1}^n \phi(f(X_i),Y_i)\right) > \epsilon\right).$$
 one-sided uniform convergence over family $\phi(\mathcal{H})$

Given uniform convergence bound, model complexity can be estimated as:

$$Q_n(\mathcal{H}, \eta) = \eta_{\phi(\mathcal{H})}^{-1}(\eta) = \inf\{\epsilon : \eta_{\phi(\mathcal{H})}(\epsilon) \le \eta\}.$$

Covering numbers: size of function family

If H is finite, then (union bound)

$$\eta_{\phi(\mathcal{H})}(\epsilon) = |\mathcal{H}| \sup_{f \in \mathcal{H}} P\left(\mathbf{E}_{X,Y}\phi(f(X),Y) - \frac{1}{n} \sum_{i=1}^{n} \phi(f(X_i),Y_i) > \epsilon\right).$$
convergence of single hypothesis

- What if family not finite?
 - Approximate by a finite number of functions (covering)
 - Let \mathcal{H} be a hypothesis family, and $\epsilon > 0$, then the covering number $N(\mathcal{H}, \epsilon)$ is the smallest number of functions $\{f_j\}$ such that $\forall f \in \mathcal{H}$, then $\min_j d(f_j, f) \leq \epsilon$.

L_{∞} covering number

- Define $d(f, f') = \sup_{X,Y} |f(X) f'(X)|$
 - the covering number is denoted as $N_{\infty}(\mathcal{H}, \epsilon)$
- Similarly, $d(f, f') = \sup_{X,Y} |\phi(f(X), Y) \phi(f'(X), Y)|$
 - the coverining number is denoted as $N_{\infty}(\phi(\mathcal{H}), \epsilon)$
- If $|\phi(f,y)-\phi(f',y)|\leq \gamma|f-f'|$ (Lipschitz in f), then $N_{\infty}(\phi(\mathcal{H}),\gamma\epsilon)\leq N_{\infty}(\mathcal{H},\epsilon)$.

Uniform Convergence Bound Using L_{∞} covering number

Let f_j be a $N_{\infty}(\phi(\mathcal{H}), \epsilon/4)$ cover of $\phi(\mathcal{H})$, then

$$\begin{split} P\left(\sup_{f\in\mathcal{H}}\left(\mathbf{E}_{X,Y}\phi(f(X),Y)-\frac{1}{n}\sum_{i=1}^{n}\phi(f(X_{i}),Y_{i})\right)>\epsilon\right)\\ \leq &P\left(\exists f\in\mathcal{H};\forall j: \text{if } |\mathbf{E}_{X,Y}\phi(f_{j}(X),Y)-\mathbf{E}_{X,Y}\phi(f(X),Y)|\leq\epsilon/4\\ &\left|\frac{1}{n}\sum_{i}\phi(f_{j}(X_{i}),Y_{i})-\sum_{i}\phi(f(X_{i}),Y_{i})\right|\leq\epsilon/4\\ &\text{then } \left(\mathbf{E}_{X,Y}\phi(f_{j}(X),Y)-\frac{1}{n}\sum_{i=1}^{n}\phi(f_{j}(X_{i}),Y_{i})\right)>\epsilon/2\right)\\ \leq &P\left(\sup_{j}\left(\mathbf{E}_{X,Y}\phi(f_{j}(X),Y)-\frac{1}{n}\sum_{i=1}^{n}\phi(f_{j}(X_{i}),Y_{i})\right)>\epsilon/2\right)\\ \leq &N_{\infty}(\phi(\mathcal{H}),\epsilon/4)\sup_{j}P\left(\left(\mathbf{E}_{X,Y}\phi(f_{j}(X),Y)-\frac{1}{n}\sum_{i=1}^{n}\phi(f_{j}(X_{i}),Y_{i})\right)>\epsilon/2\right). \end{split}$$

Exponential Tail Bound

- Estimating $P\left(\left(\mathbf{E}_{X,Y}\phi(f_j(X),Y) \frac{1}{n}\sum_{i=1}^n \phi(f_j(X_i),Y_i)\right) > \epsilon/2\right)$
- Let $z = \phi(f_j(x), y)$ and $z_i = \phi(f_j(X_i), Y_i)$ be iid (independent, identically, distributed) random variables, we want to estimate $\mathbf{E}z \frac{1}{n}\sum_{i=1}^n z_i$
 - convergence of empirical mean of a random variable to its true mean
 - law of large numbers
- Want a bound of the form (for all j):

$$P(\mathbf{E}z - \frac{1}{n}\sum_{i=1}^{n} z_i \ge \epsilon/2) \le ae^{-n\epsilon^2/b^2},$$

implying

$$\eta_{\phi(\mathcal{H})}(\epsilon) \le aN_{\infty}(\phi(\mathcal{H}), \epsilon/4)e^{-n\epsilon^2/b^2},$$

and thus

$$Q_n(\mathcal{H}, \eta) = \eta_{\phi(\mathcal{H})}^{-1}(\eta) \le \inf\{\epsilon : \epsilon \ge b\sqrt{\ln[aN_{\infty}(\phi(\mathcal{H}), \epsilon/4)/\eta]/n}\}.$$

Learning Bound for empirical risk minimization

$$\underbrace{\mathbf{E}_{X,Y}\phi(\hat{f}(X),Y)}_{\text{generalization error}} \leq \underbrace{\frac{1}{n}\sum_{i=1}^{n}\phi(\hat{f}(X_i),Y_i)}_{\text{training error}} + \underbrace{\inf\{\epsilon:\epsilon\geq b\sqrt{\ln[aN_{\infty}(\phi(\mathcal{H}),\epsilon/4)/\eta]/n}\}}_{\text{model complexity}}$$

- why exponential tail bound?
- learning complexity of form $n^{-1} \ln N_{\infty}(\phi(\mathcal{H}), \epsilon/4)$.
- test error similar to training error as long as the number of functions in the family is sub-exponential in n

Hoeffding Inequality

Assume $z \in [0,1]$, then

$$P(\mathbf{E}z - \frac{1}{n}\sum_{i=1}^{n} z_i \ge \epsilon) \le \exp(-2\epsilon^2)$$

$$P(\mathbf{E}z - \frac{1}{n}\sum_{i=1}^{n} z_i \le -\epsilon) \le \exp(-2\epsilon^2).$$

Thus

$$P(\mathbf{E}z - \frac{1}{n}\sum_{i=1}^{n} z_i \ge \epsilon/2) \le \exp(-\epsilon^2/2).$$

exponential inequality holds with a=1 and $b=\sqrt{2}$.

Hoeffding Inequality: Proof

$$P(\mathbf{E}z - \frac{1}{n} \sum_{i=1}^{n} z_{i} \geq \epsilon) e^{\lambda \epsilon} \leq \mathbf{E}e^{\lambda(\mathbf{E}z - \frac{1}{n} \sum_{i=1}^{n} z_{i})}$$

$$\leq \mathbf{E} \prod_{i=1}^{n} e^{\lambda/n(\mathbf{E}z - z_{i})} = \underbrace{\left[\mathbf{E}_{z_{i}}e^{\lambda/n(\mathbf{E}z - z_{i})}\right]^{n}}_{\text{max achieved at } z_{i} = 0 \text{ or } 1}$$

$$\leq \left[e^{\lambda/n(\mathbf{E}z - 1)}\mathbf{E}z + (1 - \mathbf{E}z)e^{\lambda/n\mathbf{E}z}\right]^{n} \quad (*)$$

$$\leq \left[e^{(\lambda/n)^{2}/8}\right]^{n}. \quad (**)$$

Taking $\lambda = 4n\epsilon$, we have $P(\mathbf{E}z - \frac{1}{n}\sum_{i=1}^{n} z_i \geq \epsilon) \leq e^{-2n\epsilon^2}$.

Details

• Proof of (*): using Jensens: $e^x \leq (1-x/a) + x/ae^a$ for all $0 \leq x \leq 1$, we have

$$\mathbf{E}_{z_i} e^{\lambda/n(\mathbf{E}z - z_i)} \le e^{\lambda/n(\mathbf{E}z - 1)} \mathbf{E}_{z_i} [(1 - (1 - z_i)) + (1 - z_i)e^{\lambda/n}]$$

• Proof of (**): need to show that when $x \in [0,1]$

$$e^{\alpha(x-1)}x + (1-x)e^{\alpha x} \le \underbrace{0.5[e^{-\alpha/2} + e^{\alpha/2}]}_{\text{achieved at } x = 0.5} \le e^{\alpha^2/8}.$$

The last inequlity follows from comparing Taylor expansion of

$$\ln[0.5e^{-\alpha/2} + 0.5e^{\alpha/2}] \le \alpha^2/8.$$

Empirical (sample dependent) covering numbers

- distance d is data dependent.
- e.g. empirical L_{∞} covering number: distance is $d(f, f'|S_n) = \sup_{(X_i, Y_i)} |\phi(f(X_i), Y_i) \phi(f'(X_i), Y_i)|$
- empirical L_{∞} cover can be finite when L_{∞} cover is infinite.
- Learning bound can be obtained using empirical covering numbers (shown in later lectures)

References

- Books on empirical process:
 - A. W. van der Vaart and J. A. Wellner. Weak convergence and empirical processes. Springer Series in Statistics. Springer-Verlag, New York, 1996.
- Hoeffding Inequality:
 - W. Hoeffding. Probability inequalities for sums of bounded random variables. *Journal of the American Statistical Association*, 58(301):13– 30, March 1963.